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Introduction 
The processes of water exchange between tissue compartments may have a profound effect on the physical 
interpretation of MRI data.  Water exchange is mediated by semi-permeable cell membranes and vascular walls.  
Water molecules in tissues exhibit random Brownian motion, therefore during the time-frame of the MR experiment 
most of them can be found in the vicinity of thecell membrane or vascular wall.  Although for most permeable cell 
membrane (red blood cell) only one in 104 of these molecules eventually crosses the cell membrane, in 10-100ms 
(typical timeframe for MR experiment), most of the water molecules will experience cellular walls many times and 
therefore most of them will migrate from one tissue compartment to the other.  Exchange process in tissue is 
difficult to assess, therefore it is common to assume in MRI models that the exchange processes are fast (perfusion 
models) or to entirely neglect them (diffusion data interpretation).  In this paper the exchange process is presented 
and its effects on tissue relaxation and diffusion data interpretation are discussed. 
 
Cell Membrane Permeability 
The exchange process between liquid tissue compartments (intra-, extracellular, plasma and blood) are thought to 
be mediated by the process of water molecules diffusion through the semi-permeable membranes (1). It is common 
to express cell membrane permeability, P, in the terms of the pseudo-first order exchange rate kIE: 
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where S/V is a surface-to-volume ratio of the cell.  The cell membrane permeability, P, depends on the type of cell 
membrane and the mobility of water inside the cell.  The literature data concerning cell membrane permeability for 
water are very limited and P is only accurately known for RBC (2.5–3.0) x 10–3 cm s–1  (1) .  For other types of cells, 
P is estimated to be lower than that of RBC, but in most cases larger than 0.5 x10–3 cm s–1.  In vitro MRI 
experiments in bovine optic nerve estimated axonal and glial permeability at (0.9 ± 0.2) and (1.7 ± 0.3) x10–3 cm s–
1, respectively (2).  
The inverse of kIE defines the average residence time, τ, of the water molecule inside the cell. It is therefore evident 
that the exchange rate constant (thus τ) depends not only on P, but also on cellular size and cell shape.  It is 
apparent that water inside cells with small diameter has a relatively short τ .  In contrast, τ is large for large cells. 
This is to be expected, since for the larger cellular size, it would take longer for an average water molecule to reach 
the cell membrane and eventually cross it. τ has been estimated previously to range from approximately 12 ms for 
RBC (3), to 600 ms for neuronal cells (4). 
 

 
Tissue Compartments and Exchange 
Due to structural heterogeneity contrast mechanisms in tissue are often complex.  It is common to approximate 
tissue microstructure using multi-compartmental tissue models (Fig.1).  
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Figure 1.  Compartmental model of tissue.  Each compartment has its own magnetization, M and intrinsic 
longitudinal, T1 and transverse, T2 relaxation times.  The spins are allowed for exchange (arrows) between tissue 
compartments.  The macromolecular pool is not “visible” in a standard MRI experiment , due to its extremely short 
T2 relaxation (in order of μs (5)).  However, it may significantly influence MR parameters of “visible” liquid protons in 
intra, extra and blood compartments. 
  
Since the physical environment of water in different tissue compartments is vastly different, there is no reason to 
believe that the intrinsic relaxation times in tissue compartments are similar.  For example T2 relaxation of red blood 
cell (RBC) is on the order of 130 ms (6), whereas T2 of plasma is approximately 700 ms.  Therefore, one may 
expect multi-exponential behavior of T2 or T1 relaxation tissue.  In particular, T2 relaxation could be expressed as:  
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where i denotes various tissue compartments. The physical interpretation of the relaxation decay is however, much 
more complex than eq. [2] would indicate.  This is because of the exchange of protons between various tissue 
compartments.  On the typical scale of the MR experiment (~hundreds of ms) the water proton can migrate from 
one tissue compartment to the other or exchange its spins with immobile protons associated with macromolecules.    
The processes of inter-compartmental exchange have been shown to have a profound effect on MR measures of 
tissue such as T1 and T2 and diffusion. The exchange process can be easily incorporated into the standard Bloch 
equations describing the magnetization behavior. For example for the simplest case of the two-compartmental 
system consisting of intra and extracellular water the magnetization of each of the pools can be described as: 
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where MI,E denote the magnetization in intra (I) and extracellular (E) space, RI,E the rates of decay (1/T2) and kEI 
exchange ratio from extracellular to intracellular space, which has to satisfy the boundary condition, in order to 
preserve the spin densities in intra- and extracellular space: 
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MI,E(0) denote equilibrium magnetization in each of the pools.  Eqs. 3-4 can be readily solved, showing that the total 
magnetization of two-compartmental system (MI+ME) decays bi-exponentially with two well distinguished rates as is 



illustrated in Fig.2.  In the absence of exchange (kIE=0) the total magnetization is characterized by two relaxation 
rates that are equal to the intrinsic decay rates RI,E of intra and extracellular pools.  The relative amplitudes of those 
decay rates are also equal to the populations of intra and extracellular (Fig.2a).  However, when the exchange is 
present both the decay rates and their relative amplitudes are not equal to the intrinsic ones as shown in Fig.2b.  
Finally, when the exchange rate is very fast the system decays mono-exponentially with the rate that is equal to the 
weighted average of intrinsic rates R=(MI*RI+ME*Re)/(MI+ME).  This scenario is often described in terms of three 
exchange regimes (7,8): 
a) Slow  (RI,E>>kIE) 
b) Intermediate (RI,E~kIE) 
c) Fast (RI,E<<kIE) 
 

 
Figure 2.  The relaxation components of two-pool model system in the case of negligible (a), intermediate (b) and 
fast exchange (c).  The dotted lines represent intrinsic relaxation rates of two pools.  Note that both the amplitudes 
and positions of relaxation rates, in the presence of exchange do not correspond to the intrinsic ones.  In the case 
of the fast exchange regime the system decays with single relaxation rate constant that is weighted average of intra 
and extracellular components. 

 
Perfusion: 
Dynamic Contrast Enhancement (DCE) MRI is based on the indirect detection of contrast agent (CA) by measuring 
MR characteristics of tissue during bolus injection of CA. Most DCE MRI models are based on mathematical 
formalism developed by Tofts (9).  This model is based on three following assumptions: 
1. the water in different tissue compartments is in a fast exchange regime (total “mixing” of water), 
2. the CA is uniformly distributed in a tissue compartment, 
3. the CA effect on water characteristics in tissue is similar to that of saline. 
As a consequence of these assumptions the CA concentration in tissue can be calculated from the MR signal using 
the following formula: 
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where T1, T10 denote the T1 relaxation times in the presence and absence of CA, respectively; [Gd] is a 
concentration of CA in tissue compartment and  r1 is a relaxivity of CA in saline.   
 



It has to be noted that eq. [5] is valid only in the case of fast exchange regime.  However, high concentration of CA 
cause the T1 relaxation to deviate from mono-exponential behaviour. Thus commonly accepted models usually lead 
to systematic overestimation of the perfusion transfer constant, Ktrans, and potentially large overestimation of the 
blood plasma volume fraction (10).  In fact, even in the blood pool alone, T1 relaxation may not be mono-
exponential for high concentration (2mM) of intravascular contrast agent (i.e. Gd-17) with high T1 relaxivity. 
In recent years, heterogenous DCE MRI models, in which CAs are not assumed to be uniformly distributed with 
each tissue compartment (11) (10) and water exchange process are taken into account (12) have been proposed.  
They significantly reduce systematic errors in perfusion parameters. This reduction however comes at the cost of an 
increased number of model parameters necessary to perform data analysis.  
 
Diffusion: 
The effects of compartmental exchange on the diffusion signal can be easily incorporated into the diffusion 
models using the modified Bloch equations proposed by Karger (13) and first implemented by Andrasko in 
blood (1), and recently tested for white matter (14) and red blood ghost cells (15). It has to be noted, 
however, that the Bloch equations with exchange in the presence of diffusion are substantially different in 
their physical interpretation than those for T1 or T2 relaxation. This difference is due to the fact that the 
“decay rate constant” for diffusion, Rdiff, is defined as: 
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Where diffusion factor q =γgδ (γ gyromagnetic ratio, g and δ are diffusion gradient amplitude and duration 
respectively).  ADC denotes the apparent diffusion coefficient in intra or extracellular compartments. 
Therefore, Rdiff depends on the experimental parameters (q) and ADC. In contrast to the longitudinal (1/T1) 
or transverse (1/T2) rate constants, Rdiff is not a constant. 
In consequence, the “slow”, “intermediate”, and “fast” exchange regimes depend on experimental 
conditions. In the constant diffusion time experiment (cd) when q varies (usually by increasing gradient 
strength, g), Rdiff increases; whereas in the constant gradient experiment (cg) where diffusion time, Δ, is 
varied, Rdiff remains constant in extracellular compartments and decreases with Δ in intracellular ones (due 
to changes in intracellular ADC). Consequently, these two types (cd and cg) of experiments may yield 
different diffusion curves, which has been observed by Norris and Niendorf (16). Figure 3 shows the values 
of intra- and extracellular Rdiff as a function of diffusion parameter q: 
 

 
 
Figure 3. Diffusion rate decay, Rdiff, as a function of q 
for intra and extracellular ADCs. The shaded region 
represents a typical range of exchange between intra- 
and extracellular compartments. For the small q values, 
Rdiff is slower than kIE, representing the “fast exchange” 
regime, where the total mixing of the two pools is 
observed. As q increases, Rdiff becomes 
comparable to kIE, allowing for separation of the pools 
(intermediate exchange regime) 
 

 



For small values of q (and therefore small b in the case of the “cd” experiment), Rdiff < kIE and therefore fast 
exchange regime is anticipated; if q increases, Rdiff is comparable with kIE and intermediate regime occurs. 
Consequently, the signal decay due to diffusion in a system consisting of two different exchanging 
compartments changes drastically. This is illustrated in Fig. 4. which shows the normalized diffusion signal 
decay S(b)/S(0) for a model system of white matter as a function of diffusion parameter, b, for the range of 
the exchange rates, kIE, and two diffusion times Δ, 10 and 50 ms. The PGSE signal as measured in the 
direction perpendicular to axons is shown.  
 

 
Figure 4. The diffusion curves for the two-compartmental system for two diffusion times and the 
range of permeabilites. The arrows indicate increasing kIE ranging from (0, 1, 2, 5, 10, and 20 s–1) 
or decreasing intracellular residence time, τ (∞, 1000, 500, 200, 100, and 50 ms). 

 
 
Because of the “fast” exchange regime for the small q values, increased exchange does not change the 
initial slope of the diffusion curve, which is equal to the weighted average of the apparent diffusion 
coefficients inside and outside cells: 
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This also means that the diffusion experiments for the small b values (as in clinical MRI) are insensitive to 
changes in cell membrane permeability. However, inter-compartmental exchange can markedly change 
diffusion curve characteristics for high b values. As expected, increased exchange results in a significant 
signal decrease at high b values. For short diffusion times, Δ, the effects of exchange are small because 
during this time few molecules will experience the cell membranes. In the case presented, the average 
residence time of water inside the axon (approximately 33 ms (14)) is  much longer than Δ (10 ms). 
However, for longer diffusion times (comparable to the average residence time inside the cell, τ—Fig. 4b) 
the effect of inter-compartmental exchange cannot be neglected. When the PGSE signal decay is non-
mono-exponential, it is often fitted to a phenomenological, bi-exponential model of diffusion. This approach, 
however, may lead to an overestimation of intracellular, and underestimation of extracellular ADCs and 
cellular volume fraction (2). In the case of gray matter where the neuron size varies (5 το 200  μm) the 
influence of exchange varies as well – it influences small neurons, where residence time is short (due to 
small surface to volume ratio) and is negligible for large axons where average residence time is in order of 
hundreds of ms. 
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